Lista de fórmulas envolvendo π

Parte de uma série de artigos sobre:
a constante matemática π
3.1415926535897932384626433...
Utilização
  • Área do círculo
  • Circunferência
  • Uso em outras fórmulas
Propriedades
Valor
Pessoas
História
Na cultura
Tópicos relacionados
  • v
  • d
  • e

Esta é uma lista de fórmulas significantes envolvendo a constantes matemática π {\displaystyle \scriptstyle {\pi }} .

Geometria euclidiana

π = C / d {\displaystyle \pi =C/d\!}

sendo C o perímetro da circunferência e d seu diâmetro.

A = π r 2 {\displaystyle A=\pi r^{2}\!}

sendo A a área da circunferência e r seu raio.

V = 4 3 π r 3 {\displaystyle V={4 \over 3}\pi r^{3}\!}

sendo V o volume da esfera e r seu raio.

S A = 4 π r 2 {\displaystyle SA=4\pi r^{2}\!}

sendo SA a área da superfície da esfera e r seu raio.

Física

Λ = 8 π G 3 c 2 ρ {\displaystyle \Lambda ={{8\pi G} \over {3c^{2}}}\rho \!}


Δ x Δ p h 4 π {\displaystyle \Delta x\,\Delta p\geq {\frac {h}{4\pi }}\!}


R μ ν 1 2 g μ ν R + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }\!}


F = | q 1 q 2 | 4 π ε 0 r 2 {\displaystyle F={\frac {\left|q_{1}q_{2}\right|}{4\pi \varepsilon _{0}r^{2}}}\!}


μ 0 = 4 π 10 7 N / A 2 {\displaystyle \mu _{0}=4\pi \cdot 10^{-7}\,\mathrm {N/A^{2}} \!}


  • Período de um pêndulo com pequena amplitude:
T 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}\!}


F = π 2 E I L 2 {\displaystyle F={\frac {\pi ^{2}EI}{L^{2}}}}

Fórmulas resultando π {\displaystyle \scriptstyle {\pi }}

Integrais

sech ( x ) d x = π {\displaystyle \int \limits _{-\infty }^{\infty }{\text{sech}}(x)dx=\pi \!}


t e 1 / 2 t 2 x 2 + x t d x d t = t e t 2 1 / 2 x 2 + x t d x d t = π {\displaystyle \int \limits _{-\infty }^{\infty }\int \limits _{t}^{\infty }e^{-1/2t^{2}-x^{2}+xt}dxdt=\int \limits _{-\infty }^{\infty }\int \limits _{t}^{\infty }e^{-t^{2}-1/2x^{2}+xt}dxdt=\pi \!}


1 1 1 x 2 d x = π 2 {\displaystyle \int \limits _{-1}^{1}{\sqrt {1-x^{2}}}\,dx={\frac {\pi }{2}}\!}


1 1 d x 1 x 2 = π {\displaystyle \int \limits _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi \!}


d x 1 + x 2 = π {\displaystyle \int \limits _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi \!} (forma integral de arctan sobre o domínio dos inteiros, dando o período da tan).


e x 2 d x = π {\displaystyle \int \limits _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}\!} (ver Integral Gaussiana).


d z z = 2 π i {\displaystyle \oint {\frac {dz}{z}}=2\pi i\!} (quando a trajetória de integração percorre uma vez no sentido anti-horário em torno de 0. Ver também fórmula integral de Cauchy)


sin x x d x = π {\displaystyle \int \limits _{-\infty }^{\infty }{\frac {\sin x}{x}}\,dx=\pi \!}


0 1 x 4 ( 1 x ) 4 1 + x 2 d x = 22 7 π {\displaystyle \int \limits _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}}\,dx={22 \over 7}-\pi \!} (ver também prova de que 22/7 é maior que π).


Séries infinitas eficientes

k = 0 k ! ( 2 k + 1 ) ! ! = k = 0 2 k k ! 2 ( 2 k + 1 ) ! = π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}={\frac {\pi }{2}}\!} (ver também duplo fatorial)


12 k = 0 ( 1 ) k ( 6 k ) ! ( 13591409 + 545140134 k ) ( 3 k ) ! ( k ! ) 3 640320 3 k + 3 / 2 = 1 π {\displaystyle 12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+3/2}}}={\frac {1}{\pi }}\!} (ver algoritmo de Chudnovsky)


2 2 9801 k = 0 ( 4 k ) ! ( 1103 + 26390 k ) ( k ! ) 4 396 4 k = 1 π {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}={\frac {1}{\pi }}\!} (ver Séries de Ramanujan–Sato)


3 6 5 k = 0 ( ( 4 k ) ! ) 2 ( 6 k ) ! 9 k + 1 ( 12 k ) ! ( 2 k ) ! ( 127169 12 k + 1 1070 12 k + 5 131 12 k + 7 + 2 12 k + 11 ) = π {\displaystyle {\frac {\sqrt {3}}{6^{5}}}\sum _{k=0}^{\infty }{\frac {((4k)!)^{2}(6k)!}{9^{k+1}(12k)!(2k)!}}\left({\frac {127169}{12k+1}}-{\frac {1070}{12k+5}}-{\frac {131}{12k+7}}+{\frac {2}{12k+11}}\right)=\pi \!} [1]


As seguintes são eficientes para calcular dígitos binários arbitrários de pi:

k = 0 1 16 k ( 4 8 k + 1 2 8 k + 4 1 8 k + 5 1 8 k + 6 ) = π {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{16^{k}}}\left({\frac {4}{8k+1}}-{\frac {2}{8k+4}}-{\frac {1}{8k+5}}-{\frac {1}{8k+6}}\right)=\pi \!} (ver fórmula BBP)


1 2 6 n = 0 ( 1 ) n 2 10 n ( 2 5 4 n + 1 1 4 n + 3 + 2 8 10 n + 1 2 6 10 n + 3 2 2 10 n + 5 2 2 10 n + 7 + 1 10 n + 9 ) = π {\displaystyle {\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {{(-1)}^{n}}{2^{10n}}}\left(-{\frac {2^{5}}{4n+1}}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)=\pi \!}


Outras séries infinitas

ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 {\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\!}   (ver também problema de Basileia e função zeta de Riemann)


ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + = π 4 90 {\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\!}


ζ ( 2 n ) = k = 1 1 k 2 n = 1 1 2 n + 1 2 2 n + 1 3 2 n + 1 4 2 n + = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}\,={\frac {1}{1^{2n}}}+{\frac {1}{2^{2n}}}+{\frac {1}{3^{2n}}}+{\frac {1}{4^{2n}}}+\cdots =(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}\!} , sendo B2n um números de Bernoulli.


n = 1 3 n 1 4 n ζ ( n + 1 ) = π {\displaystyle \sum _{n=1}^{\infty }{\frac {3^{n}-1}{4^{n}}}\,\zeta (n+1)=\pi \!} [2]


n = 0 ( ( 1 ) n 2 n + 1 ) 1 = 1 1 1 3 + 1 5 1 7 + 1 9 = arctan 1 = π 4 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{1}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}={\frac {\pi }{4}}\!}   (ver Fórmula de Leibniz para π)


n = 0 ( ( 1 ) n 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 3 = 1 1 3 1 3 3 + 1 5 3 1 7 3 + = π 3 32 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 4 = 1 1 4 + 1 3 4 + 1 5 4 + 1 7 4 + = π 4 96 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 5 = 1 1 5 1 3 5 + 1 5 5 1 7 5 + = 5 π 5 1536 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots ={\frac {5\pi ^{5}}{1536}}\!}


n = 0 ( ( 1 ) n 2 n + 1 ) 6 = 1 1 6 + 1 3 6 + 1 5 6 + 1 7 6 + = π 6 960 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}\!}


π = 1 + 1 2 + 1 3 + 1 4 1 5 + 1 6 + 1 7 + 1 8 + 1 9 1 10 + 1 11 + 1 12 1 13 + {\displaystyle \pi ={1}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots \!}   (Euler, 1748)
Após os primeiros dois termos, os sinais são determinados como segue: Se o denominador é primo da forma 4m - 1, o sinal é positivo; se o denominador é um primo da forma 4m + 1, o sinal é negativo; para números compostos, o sinal é igual ao produto dos seus sinais em seus fatores.[3]
Também:
n = 1 F 2 n n 2 ( 2 n n ) = 4 π 2 25 5 {\displaystyle \sum _{n=1}^{\infty }{\frac {F_{2n}}{n^{2}{\binom {2n}{n}}}}={\frac {4\pi ^{2}}{25{\sqrt {5}}}}}
onde F n {\displaystyle F_{n}} é o n-ésimo número de Fibonacci.

Fórmulas do tipo Machin

Ver também fórmula de Machin.

(Unidades dos ângulos em radianos)

π 4 = 4 arctan 1 5 arctan 1 239 {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}\!} (fórmula original de John Machin)


π 4 = arctan 1 {\displaystyle {\frac {\pi }{4}}=\arctan 1}


π 4 = arctan 1 2 + arctan 1 3 {\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}}\!}


π 4 = 2 arctan 1 2 arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{2}}-\arctan {\frac {1}{7}}\!}


π 4 = 2 arctan 1 3 + arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}\!}


π 4 = 5 arctan 1 7 + 2 arctan 3 79 {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}\!}


π 4 = 6 arctan 1 8 + 2 arctan 1 57 + arctan 1 239 {\displaystyle {\frac {\pi }{4}}=6\arctan {\frac {1}{8}}+2\arctan {\frac {1}{57}}+\arctan {\frac {1}{239}}\!}


π 4 = 12 arctan 1 49 + 32 arctan 1 57 5 arctan 1 239 + 12 arctan 1 110443 {\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}\!}


π 4 = 44 arctan 1 57 + 7 arctan 1 239 12 arctan 1 682 + 24 arctan 1 12943 {\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}\!}


π 2 = n = 0 arctan 1 F 2 n + 1 = arctan 1 1 + arctan 1 2 + arctan 1 5 + arctan 1 13 + {\displaystyle {\frac {\pi }{2}}=\sum _{n=0}^{\infty }\arctan {\frac {1}{F_{2n+1}}}=\arctan {\frac {1}{1}}+\arctan {\frac {1}{2}}+\arctan {\frac {1}{5}}+\arctan {\frac {1}{13}}+\cdots \!}

sendo F n {\displaystyle F_{n}} o n-ésimo número de Fibonacci.

Séries infinitas

Algumas séries infinitas envolvendo pi são:[4]

π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}\!} Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}\!}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 n + 1 2 10 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}\!}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}\!} Z = n = 0 ( 5 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}\!}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}\!} Z = n = 0 ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}\!} Z = n = 0 ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}\!} Z = n = 0 ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}\!} Z = n = 0 ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}\!} Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}\!}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}\!} Z = n = 0 ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}\!}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}\!} Z = n = 0 ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}\!}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}\!} Z = n = 0 ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}\!}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}\!} Z = n = 0 ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 n 72 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}\!}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}\!} Z = n = 0 ( 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 n 4 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}\!}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}\!} Z = n = 0 ( 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}\!}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}\!}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}\!} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}\!}

onde

( x ) n {\displaystyle (x)_{n}\!}

é o símbolo de Pochhammer.

Produtos infinitos

π 4 = 3 4 5 4 7 8 11 12 13 12 17 16 19 20 23 24 29 28 31 32 {\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}\cdot {\frac {5}{4}}\cdot {\frac {7}{8}}\cdot {\frac {11}{12}}\cdot {\frac {13}{12}}\cdot {\frac {17}{16}}\cdot {\frac {19}{20}}\cdot {\frac {23}{24}}\cdot {\frac {29}{28}}\cdot {\frac {31}{32}}\cdots \!} (Euler)
onde os numeradores são primos ímpares; cada denominador é um múltiplo de quatro próximo ao numerador.
n = 1 4 n 2 4 n 2 1 = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 = 4 3 16 15 36 35 64 63 = π 2 {\displaystyle \prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdots ={\frac {\pi }{2}}\!} (see also Wallis product)


Fórmula da Viète:

2 2 2 + 2 2 2 + 2 + 2 2 = 2 π {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot \cdots ={\frac {2}{\pi }}\!}

Frações contínuas

π = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 6 + {\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots \,}}}}}}}}}}


π = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}


π = 4 1 + 1 2 2 + 3 2 2 + 5 2 2 + 7 2 2 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}\,}

Para mais informações sobre esta terceira identidade ver fração contínua de Euler.

(Ver também fração contínua e fração contínua generalizada.)

Miscelânea

n ! 2 π n ( n e ) n {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\!} (fórmula de Stirling)


e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0\!} (identidade de Euler)


k = 1 n φ ( k ) 3 n 2 π 2 {\displaystyle \sum _{k=1}^{n}\varphi (k)\sim {\frac {3n^{2}}{\pi ^{2}}}\!} (ver função totiente de Euler)


k = 1 n φ ( k ) k 6 n π 2 {\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}\sim {\frac {6n}{\pi ^{2}}}\!} (ver função totiente de Euler)


Γ ( 1 2 ) = π {\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}\!} (ver também função gama)


π = Γ ( 1 / 4 ) 4 / 3 agm ( 1 , 2 ) 2 / 3 2 {\displaystyle \pi ={\frac {\Gamma \left({1/4}\right)^{4/3}\operatorname {agm} (1,{\sqrt {2}})^{2/3}}{2}}\!} (onde agm é a média aritmética-geométrica)


lim n 1 n 2 k = 1 n ( n mod k ) = 1 π 2 12 {\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n^{2}}}\sum _{k=1}^{n}(n\;{\bmod {\;}}k)=1-{\frac {\pi ^{2}}{12}}\!} (where mod is the modulo function which gives the rest of a division this formula is getting better for higher n)


π = lim n 4 n 2 k = 1 n n 2 k 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {4}{n^{2}}}\sum _{k=1}^{n}{\sqrt {n^{2}-k^{2}}}} (soma de Riemann para avaliar a área da circunferência unitária)


π = lim n 2 4 n n ( 2 n n ) 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {2^{4n}}{n{2n \choose n}^{2}}}} (fórmula de Stirling)

Referências

  1. Cetin Hakimoglu-Brown Derivation of Rapidly Converging Infinite Series
  2. Weisstein, Eric W. "Pi Formulas", MathWorld
  3. Carl Boyer, A History of Mathematics, Chapter 21., p. 488-489
  4. Simon Plouffe / David Bailey. «The world of Pi». Pi314.net. Consultado em 29 de janeiro de 2011 
    «Collection of series for π». Numbers.computation.free.fr. Consultado em 29 de janeiro de 2011 

Ver também

Leitura adicional

  • Peter Borwein, The Amazing Number Pi
  • Kazuya Kato, Nobushige Kurokawa, Saito Takeshi: Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, ISBN 0-8218-0863-X.