Wigner–Seitz radius

The Wigner–Seitz radius r s {\displaystyle r_{\rm {s}}} , named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals).[1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the volume per a free electron.[2] This parameter is used frequently in condensed matter physics to describe the density of a system. Worth to mention, r s {\displaystyle r_{\rm {s}}} is calculated for bulk materials.

Formula

In a 3-D system with N {\displaystyle N} free valence electrons in a volume V {\displaystyle V} , the Wigner–Seitz radius is defined by

4 3 π r s 3 = V N = 1 n , {\displaystyle {\frac {4}{3}}\pi r_{\rm {s}}^{3}={\frac {V}{N}}={\frac {1}{n}}\,,}

where n {\displaystyle n} is the particle density. Solving for r s {\displaystyle r_{\rm {s}}} we obtain

r s = ( 3 4 π n ) 1 / 3 . {\displaystyle r_{\rm {s}}=\left({\frac {3}{4\pi n}}\right)^{1/3}.}

The radius can also be calculated as

r s = ( 3 M 4 π ρ N V N A ) 1 3 , {\displaystyle r_{\rm {s}}=\left({\frac {3M}{4\pi \rho N_{V}N_{\rm {A}}}}\right)^{\frac {1}{3}}\,,}

where M {\displaystyle M} is molar mass, N V {\displaystyle N_{V}} is count of free valence electrons per particle, ρ {\displaystyle \rho } is mass density and N A {\displaystyle N_{\rm {A}}} is the Avogadro constant.

This parameter is normally reported in atomic units, i.e., in units of the Bohr radius.

Assuming that each atom in a simple metal cluster occupies the same volume as in a solid, the radius of the cluster is given by

R 0 = r s n 1 / 3 {\displaystyle R_{0}=r_{s}n^{1/3}}

where n is the number of atoms.[3][4]

Values of r s {\displaystyle r_{\rm {s}}} for the first group metals:[2]

Element r s / a 0 {\displaystyle r_{\rm {s}}/a_{0}}
Li 3.25
Na 3.93
K 4.86
Rb 5.20
Cs 5.62

Wigner–Seitz radius is related to the electronic density by the formula

r s = 0.62035 ρ 1 / 3 {\displaystyle r_{s}=0.62035\rho ^{1/3}}

where, ρ can be regarded as the average electronic density in the outer portion of the Wigner-Seitz cell.[5]

See also

References

  1. ^ Girifalco, Louis A. (2003). Statistical mechanics of solids. Oxford: Oxford University Press. p. 125. ISBN 978-0-19-516717-7.
  2. ^ a b *Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics. Holt, Rinehart and Winston. ISBN 0-03-083993-9.
  3. ^ Bréchignac, Catherine; Houdy, Philippe; Lahmani, Marcel, eds. (2007). Nanomaterials and nanochemistry. Berlin Heidelberg: Springer. ISBN 978-3-540-72992-1.
  4. ^ "Radius of Cluster using Wigner Seitz Radius Calculator | Calculate Radius of Cluster using Wigner Seitz Radius". www.calculatoratoz.com. Retrieved 2024-05-28.
  5. ^ Politzer, Peter; Parr, Robert G.; Murphy, Danny R. (1985-05-15). "Approximate determination of Wigner-Seitz radii from free-atom wave functions". Physical Review B. 31 (10): 6809–6810. doi:10.1103/PhysRevB.31.6809. ISSN 0163-1829. PMID 9935571.


  • v
  • t
  • e