Meta-Tyramine

meta-Tyramine
Meta-Tyramine ball and stick model
Names
Preferred IUPAC name
3-(2-Aminoethyl)phenol
Other names
m-Tyramine; 3-Tyramine;
3-Hydroxyphenylethylamine
Identifiers
CAS Number
  • 588-05-6 checkY
3D model (JSmol)
  • Interactive image
ChEBI
  • CHEBI:89626
ChemSpider
  • 11008
ECHA InfoCard 100.197.155 Edit this at Wikidata
PubChem CID
  • 11492
UNII
  • K1OA38R0EZ checkY
CompTox Dashboard (EPA)
  • DTXSID50207522 Edit this at Wikidata
InChI
  • InChI=1S/C8H11NO/c9-5-4-7-2-1-3-8(10)6-7/h1-3,6,10H,4-5,9H2
  • Oc1cc(ccc1)CCN
Properties
Chemical formula
C8H11NO
Molar mass 137.182 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

meta-Tyramine, also known as m-tyramine and 3-tyramine, is an endogenous trace amine neuromodulator and a structural analog of phenethylamine.[1][2][3] It is a positional isomer of para-tyramine, and similarly to it, has effects on the adrenergic and dopaminergic systems.[4][5]

meta-Tyramine is produced in humans via aromatic amino acid decarboxylase-mediated metabolism of meta-tyrosine.[6] meta-Tyramine can be metabolized into dopamine via peripheral or brain CYP2D6 enzymes in humans.[7]

See also

References

  1. ^ Boulton AA, Huebert ND (November 1981). "Biosynthesis of some urinary trace amines in the rat and the human". Research Communications in Chemical Pathology and Pharmacology. 34 (2): 295–310. PMID 7335956.
  2. ^ Dyck LE, Juorio AV, Boulton AA (June 1982). "The in vitro release of endogenous m-tyramine, p-tyramine and dopamine from rat striatum". Neurochemical Research. 7 (6): 705–16. doi:10.1007/bf00965523. PMID 7121718. S2CID 20758261.
  3. ^ Sardar A, Juorio AV, Boulton AA (June 1987). "The concentration of p- and m-tyramine in the rat mesolimbic system: its regional distribution and effect of monoamine oxidase inhibition". Brain Research. 412 (2): 370–4. doi:10.1016/0006-8993(87)91145-0. PMID 3607473. S2CID 34094088.
  4. ^ Dyck LE, Kazakoff CW, Dourish CT (October 1982). "The role of catecholamines, 5-hydroxytryptamine and m-tyramine in the behavioural effects of m-tyrosine in the rat". European Journal of Pharmacology. 84 (3–4): 139–49. doi:10.1016/0014-2999(82)90196-0. PMID 7173317.
  5. ^ McQuade PS, Wood PL (1984). "The effects of administration of meta-tyramine and para-tyramine on dopamine and its metabolites in the rat striatum". Progress in Neuro-psychopharmacology & Biological Psychiatry. 8 (4–6): 705–9. doi:10.1016/0278-5846(84)90042-3. PMID 6531442. S2CID 24889205.
  6. ^ EC 4.1.1.28 – Aromatic-L-amino-acid decarboxylase (Homo sapiens). Technische Universität Braunschweig. July 2016. Retrieved 7 October 2016. Substrate: m-tyrosine

    Product: m-tyramine + CO2

    Organism: Homo sapiens
    {{cite encyclopedia}}: |website= ignored (help)
    Reaction diagram
  7. ^ Wang X, Li J, Dong G, Yue J (February 2014). "The endogenous substrates of brain CYP2D". Eur. J. Pharmacol. 724: 211–218. doi:10.1016/j.ejphar.2013.12.025. PMID 24374199. The highest level of brain CYP2D activity was found in the substantia nigra ... The in vitro and in vivo studies have shown the contribution of the alternative CYP2D-mediated dopamine synthesis to the concentration of this neurotransmitter although the classic biosynthetic route to dopamine from tyrosine is active. ... Tyramine levels are especially high in the basal ganglia and limbic system, which are thought to be related to individual behavior and emotion (Yu et al., 2003c). ... Rat CYP2D isoforms (2D2/2D4/2D18) are less efficient than human CYP2D6 for the generation of dopamine from p-tyramine. The Km values of the CYP2D isoforms are as follows: CYP2D6 (87–121 μm) ≈ CYP2D2 ≈ CYP2D18 > CYP2D4 (256 μm) for m-tyramine and CYP2D4 (433 μm) > CYP2D2 ≈ CYP2D6 > CYP2D18 (688 μm) for p-tyramine
  • v
  • t
  • e
Amino acid-derived
Major excitatory /
inhibitory systems
Glutamate system
GABA system
Glycine system
GHB system
Biogenic amines
Monoamines
Trace amines
Others
Neuropeptides
  • See here instead.
Lipid-derived
Endocannabinoids
Neurosteroids
  • See here instead.
Nucleobase-derived
Nucleosides
Adenosine system
Vitamin-derived
Miscellaneous
Cholinergic system
Gasotransmitters
Candidates
  • v
  • t
  • e
TAAR1
Agonists
Endogenous
Synthetic
Neutral antagonists
  •  
Inverse agonists
TAAR2
Agonists
 
Neutral antagonists
  •  
TAAR5
Agonists
Neutral antagonists
  •  
Inverse agonists
References for all endogenous human TAAR1 ligands are provided at List of trace amines


References for synthetic TAAR1 agonists can be found at TAAR1 or in the associated compound articles. For TAAR2 and TAAR5 agonists and inverse agonists, see TAAR for references.


See also: Receptor/signaling modulators
  • v
  • t
  • e
Phenethylamines


Stimulants: Phenylethanolamine

Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
Phenylalkylpyrrolidines
Catecholamines
(and close relatives)
Miscellaneous


Stub icon

This drug article relating to the nervous system is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e