Binomial process

A binomial process is a special point process in probability theory.

Definition

Let P {\displaystyle P} be a probability distribution and n {\displaystyle n} be a fixed natural number. Let X 1 , X 2 , , X n {\displaystyle X_{1},X_{2},\dots ,X_{n}} be i.i.d. random variables with distribution P {\displaystyle P} , so X i P {\displaystyle X_{i}\sim P} for all i { 1 , 2 , , n } {\displaystyle i\in \{1,2,\dots ,n\}} .

Then the binomial process based on n and P is the random measure

ξ = i = 1 n δ X i , {\displaystyle \xi =\sum _{i=1}^{n}\delta _{X_{i}},}

where δ X i ( A ) = { 1 , if  X i A , 0 , otherwise . {\displaystyle \delta _{X_{i}(A)}={\begin{cases}1,&{\text{if }}X_{i}\in A,\\0,&{\text{otherwise}}.\end{cases}}}

Properties

Name

The name of a binomial process is derived from the fact that for all measurable sets A {\displaystyle A} the random variable ξ ( A ) {\displaystyle \xi (A)} follows a binomial distribution with parameters P ( A ) {\displaystyle P(A)} and n {\displaystyle n} :

ξ ( A ) Bin ( n , P ( A ) ) . {\displaystyle \xi (A)\sim \operatorname {Bin} (n,P(A)).}

Laplace-transform

The Laplace transform of a binomial process is given by

L P , n ( f ) = [ exp ( f ( x ) ) P ( d x ) ] n {\displaystyle {\mathcal {L}}_{P,n}(f)=\left[\int \exp(-f(x))\mathrm {P} (dx)\right]^{n}}

for all positive measurable functions f {\displaystyle f} .

Intensity measure

The intensity measure E ξ {\displaystyle \operatorname {E} \xi } of a binomial process ξ {\displaystyle \xi } is given by

E ξ = n P . {\displaystyle \operatorname {E} \xi =nP.}

Generalizations

A generalization of binomial processes are mixed binomial processes. In these point processes, the number of points is not deterministic like it is with binomial processes, but is determined by a random variable K {\displaystyle K} . Therefore mixed binomial processes conditioned on K = n {\displaystyle K=n} are binomial process based on n {\displaystyle n} and P {\displaystyle P} .

Literature

  • Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.