Affine bundle

Type of fiber bundle

In mathematics, an affine bundle is a fiber bundle whose typical fiber, fibers, trivialization morphisms and transition functions are affine.[1]

Formal definition

Let π ¯ : Y ¯ X {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X} be a vector bundle with a typical fiber a vector space F ¯ {\displaystyle {\overline {F}}} . An affine bundle modelled on a vector bundle π ¯ : Y ¯ X {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X} is a fiber bundle π : Y X {\displaystyle \pi :Y\to X} whose typical fiber F {\displaystyle F} is an affine space modelled on F ¯ {\displaystyle {\overline {F}}} so that the following conditions hold:

(i) Every fiber Y x {\displaystyle Y_{x}} of Y {\displaystyle Y} is an affine space modelled over the corresponding fibers Y ¯ x {\displaystyle {\overline {Y}}_{x}} of a vector bundle Y ¯ {\displaystyle {\overline {Y}}} .

(ii) There is an affine bundle atlas of Y X {\displaystyle Y\to X} whose local trivializations morphisms and transition functions are affine isomorphisms.

Dealing with affine bundles, one uses only affine bundle coordinates ( x μ , y i ) {\displaystyle (x^{\mu },y^{i})} possessing affine transition functions

y i = A j i ( x ν ) y j + b i ( x ν ) . {\displaystyle y'^{i}=A_{j}^{i}(x^{\nu })y^{j}+b^{i}(x^{\nu }).}

There are the bundle morphisms

Y × X Y ¯ Y , ( y i , y ¯ i ) y i + y ¯ i , {\displaystyle Y\times _{X}{\overline {Y}}\longrightarrow Y,\qquad (y^{i},{\overline {y}}^{i})\longmapsto y^{i}+{\overline {y}}^{i},}
Y × X Y Y ¯ , ( y i , y i ) y i y i , {\displaystyle Y\times _{X}Y\longrightarrow {\overline {Y}},\qquad (y^{i},y'^{i})\longmapsto y^{i}-y'^{i},}

where ( y ¯ i ) {\displaystyle ({\overline {y}}^{i})} are linear bundle coordinates on a vector bundle Y ¯ {\displaystyle {\overline {Y}}} , possessing linear transition functions y ¯ i = A j i ( x ν ) y ¯ j {\displaystyle {\overline {y}}'^{i}=A_{j}^{i}(x^{\nu }){\overline {y}}^{j}} .

Properties

An affine bundle has a global section, but in contrast with vector bundles, there is no canonical global section of an affine bundle. Let π : Y X {\displaystyle \pi :Y\to X} be an affine bundle modelled on a vector bundle π ¯ : Y ¯ X {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X} . Every global section s {\displaystyle s} of an affine bundle Y X {\displaystyle Y\to X} yields the bundle morphisms

Y y y s ( π ( y ) ) Y ¯ , Y ¯ y ¯ s ( π ( y ) ) + y ¯ Y . {\displaystyle Y\ni y\to y-s(\pi (y))\in {\overline {Y}},\qquad {\overline {Y}}\ni {\overline {y}}\to s(\pi (y))+{\overline {y}}\in Y.}

In particular, every vector bundle Y {\displaystyle Y} has a natural structure of an affine bundle due to these morphisms where s = 0 {\displaystyle s=0} is the canonical zero-valued section of Y {\displaystyle Y} . For instance, the tangent bundle T X {\displaystyle TX} of a manifold X {\displaystyle X} naturally is an affine bundle.

An affine bundle Y X {\displaystyle Y\to X} is a fiber bundle with a general affine structure group G A ( m , R ) {\displaystyle GA(m,\mathbb {R} )} of affine transformations of its typical fiber V {\displaystyle V} of dimension m {\displaystyle m} . This structure group always is reducible to a general linear group G L ( m , R ) {\displaystyle GL(m,\mathbb {R} )} , i.e., an affine bundle admits an atlas with linear transition functions.

By a morphism of affine bundles is meant a bundle morphism Φ : Y Y {\displaystyle \Phi :Y\to Y'} whose restriction to each fiber of Y {\displaystyle Y} is an affine map. Every affine bundle morphism Φ : Y Y {\displaystyle \Phi :Y\to Y'} of an affine bundle Y {\displaystyle Y} modelled on a vector bundle Y ¯ {\displaystyle {\overline {Y}}} to an affine bundle Y {\displaystyle Y'} modelled on a vector bundle Y ¯ {\displaystyle {\overline {Y}}'} yields a unique linear bundle morphism

Φ ¯ : Y ¯ Y ¯ , y ¯ i = Φ i y j y ¯ j , {\displaystyle {\overline {\Phi }}:{\overline {Y}}\to {\overline {Y}}',\qquad {\overline {y}}'^{i}={\frac {\partial \Phi ^{i}}{\partial y^{j}}}{\overline {y}}^{j},}

called the linear derivative of Φ {\displaystyle \Phi } .

See also

  • Fiber bundle
  • Fibered manifold
  • Vector bundle
  • Affine space

Notes

  1. ^ Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF), Springer-Verlag, archived from the original (PDF) on 2017-03-30, retrieved 2013-05-28. (page 60)

References

  • S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vols. 1 & 2, Wiley-Interscience, 1996, ISBN 0-471-15733-3.
  • Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF), Springer-Verlag, archived from the original (PDF) on 2017-03-30, retrieved 2013-05-28
  • Sardanashvily, G., Advanced Differential Geometry for Theoreticians. Fiber bundles, jet manifolds and Lagrangian theory, Lambert Academic Publishing, 2013, ISBN 978-3-659-37815-7; arXiv:0908.1886.
  • Saunders, D.J. (1989), The geometry of jet bundles, Cambridge University Press, ISBN 0-521-36948-7